An Analogue to a Theorem of Fefferman and Phong for Averaging Operators Along Curves with Singular Fractional Integral Kernel

نویسنده

  • Michael Greenblatt
چکیده

Thus Tf(x) can be viewed as averaging the function f over the curve t → γ(x, t) with respect to the fractional integral kernel k(t). The condition γ(x, 0) = x is a way of saying the curve at x is ”centered at x”, and the condition that ∂γ ∂t (x, t) 6= 0 ensures that the averaging is smooth. In fact, the arguments of this paper will go through with k(t) replaced by k(x, t) satisfying appropriate x-derivative conditions, as will be described at the end of this paper. However, to simplify the exposition we asssume (1.3). It should be pointed out that recent work of Seeger and Wainger [SW] has also dealt with Radon transforms with fractional integral kernel, proving L to L estimates under rather different hypotheses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet‎-based numerical ‎method‎ ‎‎‎‎for solving fractional integro-differential equation with a weakly singular ‎kernel

This paper describes and compares application of wavelet basis and Block-Pulse functions (BPFs) for solving fractional integro-differential equation (FIDE) with a weakly singular kernel‎. ‎First‎, ‎a collocation method based on Haar wavelets (HW)‎, ‎Legendre wavelet (LW)‎, ‎Chebyshev wavelets (CHW)‎, ‎second kind Chebyshev wavelets (SKCHW)‎, ‎Cos and Sin wavelets (CASW) and BPFs are presented f...

متن کامل

NUMERICAL APPROACH TO SOLVE SINGULAR INTEGRAL EQUATIONS USING BPFS AND TAYLOR SERIES EXPANSION

In this paper, we give a numerical approach for approximating the solution of second kind Volterra integral equation with Logarithmic kernel using Block Pulse Functions (BPFs) and Taylor series expansion. Also, error analysis shows efficiency and applicability of the presented method. Finally, some numerical examples with exact solution are given.

متن کامل

Laplace Variational Iteration Method for Modified Fractional Derivatives with Non-singular Kernel

A universal approach by Laplace transform to the variational iteration method for fractional derivatives with the nonsingular kernel is presented; in particular, the Caputo-Fabrizio fractional derivative and the Atangana-Baleanu fractional derivative with the non-singular kernel is considered. The analysis elaborated for both non-singular kernel derivatives is shown the necessity of considering...

متن کامل

An effective method for approximating the solution of singular integral equations with Cauchy kernel type

In present paper, a numerical approach for solving Cauchy type singular integral equations is discussed. Lagrange interpolation with Gauss Legendre quadrature nodes and Taylor series expansion are utilized to reduce the computation of integral equations into some algebraic equations. Finally, five examples with exact solution are given to show efficiency and applicability of the method. Also, w...

متن کامل

Solvability of infinite system of nonlinear singular integral equations in the C(Itimes‎ I‎, ‎c) space and modified semi-analytic method to find a closed-form of solution

‎In this article‎, ‎we discuss about solvability of infinite systems of singular integral equations with two variables in the Banach sequence space $C(I times I‎, ‎c)$ by applying measure of noncompactness‎ and Meir-Keeler condensing operators‎. By presenting an example, we have illustrated our results‎. ‎For validity of the results we introduce a modified semi-analytic method in the case of tw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004